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N = 1 supersymmetry algebras in d = 2, 3, 4 mod 8 

J W van Holten and A Van Proeyenf 
CERN, CH1211 Geneva 23, Switzerland 

Received 27 April 1982 

Abstract. We derive Poincare, de Sitter and conformal supersymmetry algebras in all 
dimensions allowing Majorana spinors. We consider only minimal gradings ( N  = l ) ,  and 
show that these always exist. A brief discussion of fermionic central charges is given. 

1. Introduction 

In various discussions of auxiliary fields in 10 and 11 dimensions, it was noted that 
the structure of the theories considered seemed to reflect some underlying conformal 
supersymmetry (Bergshoeff et a1 1982, Bergshoeff and de Roo 1982, Van Proeyen 
1981). However, the existence of superconformal symmetries in d = 10, 11 and other 
dimensions has been put into doubt. A closer examination reveals that these arguments 
for non-existence are implicitly based on on-shell properties of the theory. It is well 
known that the on-shell symmetries of relativistic field theories can only be generated 
by scalar operators with respect to the Lorentz group, with the exception of the 
generators of the PoincarC group itself or, for massless states, those of the conformal 
group and their spin-; gradings. Generators of other on-shell symmetries in non-trivial 
representations of the Lorentz group are ruled out (Coleman and Mandula 1967, 
Haag et a1 1975). This was in fact the starting point for the analysis of all possible 
supersymmetry algebras in four dimensions carried out in Haag er a1 (1975). 

We will however disregard such on-shell theorems. Our ultimate interest is to 
gain information on the off-shell formulation of higher-dimensional supergravity 
theories, and off -shell these theories may have many more unsuspected invariances. 
For these extra symmetries the non-existence of on-shell representations is irrelevant 
because they do not transform the physical states. 

The usefulness of these extra symmetries has been stressed before (de Wit et al 
1980a, de Wit 1980) and is well illustrated by the construction of the highly nonlinear 
N = 1 , 2  supergravity theories and their matter couplings. In fact, it was the conformal 
symmetry which clarified the structure of N = 2 supergravity to the extent that one 
could base a complete multiplet calculus on it. This led, for example, to the construction 
of an alternative off-shell formulation of the Poincart theory. 

In this paper we will show that without the on-shell restrictions it is possible to 
obtain N = 1 de Sitter and conformal superalgebras in all space-time dimensions 
which allow Majorana spinorst. This last requirement is perhaps not necessary, but 

+ Aangesteld navorser, NFWO, Belgium. 
$The  notion of Majorana spinors can be generalised to more dimensions than we consider by giving up 
the property (A41 (see van Nieuwenhuizen 1981). However, the {Q, Q} anticommutator can then no 
longer contain E',. We ignore this possibility. 
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is useful in practice. Moreover, the interesting cases, when d = 4,  10, 11, are included 
among them. The central element of our approach is the solution of Jacobi identities 
which, for graded algebras, read 

(1.1) [A, [B,  C } }  = [ [A ,  B ) ,  C }  - ( - Ib‘[[A, C} ,  B}, 
with 

-1, if B, C are fermionic, 
in all other cases. i - ) b c  = ( +1,  

In order to do Dirac algebra manipulations in arbitrary numbers of dimensions, it 
was quite useful to develop a general procedure and notation for the reduction of 
products of Dirac-algebra elements. We use these notations, which are explained in 
the appendix, throughout. 

The main part of this paper is organised as follows. In $ 5  2 and 3 we derive the 
de Sitter and conformal superalgebras respectively on the assumption that they have 
a minimal ( N  = 1) grading. The techniques and procedures in both cases are quite 
similar, but we have tried to keep the sections as self-contained as possible so that 
they can be read independently. Section 4 contains a short discussion of fermionic 
central charges which can occur in Poincare algebras and are claimed to be part of 
the underlying structure of d = 11 supergravity (d’Auria and Fre 1981). In 8 5 we 
collect our results and present our conclusions. It contains a review of the algebras 
we found. Finally, a connection between conformal algebras and de Sitter algebras 
in one more dimension is indicated. 

2. De Sitter superalgebras 

In this section we will investigate the possibilities for grading of the de Sitter algebra 

By a grading we mean that we allow an anticommuting spinor generator Q,. Being 
a spinor, it has the following transformation rule under Lorentz rotations: 

[M,,, a]= - tr,,Q. (2.2) 
We restrict ourselves to Majorana spinors, so (see appendix) we can only treat the 
dimensions d = 2, 3,  4 mod 8 .  In this section we allow only one spinor generator (a 
minimal grading). Generalisations will be discussed in D 4. 

To start our analysis we have to write down a general form for the [P, Q] 
commutator. The only possibility is 

(2.3) 
where x is an arbitrary parameter. In this argument we used implicitly Lorentz 
covariance. This will always be done. As a result, Jacobi identities with an explicit 
M P y  are automatically fulfilled. From (2.1)-(2.3) one could check for example the 
[P, Q, M ]  Jacobi identity. 

Having put forward the form of the [P, Q] commutator, one can consider the 
[P, P, Q] Jacobi identity. It results in 

(2.4) m = x  . 

[P,, Q l  = i x  T,Q, 

2 
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Using real generators and matrices, x is real. Therefore we find only gradings of 
de Sitter algebras with a positive radius m-’, In fact, (2.4) has two solutions for x. 
If we allow more Q’s some could have a positive x and others a negative x. This 
will be discussed further in $4. Here we allow only one Q and therefore take one 
choice for x. 

To investigate the consequences of the [P, Q, Q] Jacobi identity, one needs an 
expression for the {Qa, Qb} anticommutator. By definition, this must be symmetric in 
a t* b. In the appendix it is indicated that for Majorana spinors the symmetric matrices 
are (TmC-’)ab with m = 1, 2 mod 4. So a general form for {a, Q} is 

(2.5) 

The sum over k runs over 1 Q k G d with the restriction k = 1, 2 mod 4. The prime 
indicates that for odd dimensions the sum is only taken for k s (d  - 1)/2 (the indepen- 
dent ones). We can now use the [P, Q, Q] Jacobi identity to find 

In fact, the right-hand side contains only one term as { l k ’ }  is only non-zero for k = i f 1.  
Since Z k  exist only for k = 1, 2 mod 4, only one of the two terms survives. Note 
however that no prime is written on the sum symbol in (2.6). Therefore in odd 
dimensions k can be higher than (d - 1)/2. We define those Z k  by 

(2.7) 
1 ( r d - k C - l ) , z d - k  = -(rkc-l),zk for odd d .  

1 

(d - k ) !  k !  

This relation implies 

So, for example in d = 11,  from (2.6) and (2.8) we get 

(2.9) 
i 5 

5 !  
- [PY, z:, L15 1 = X Z L ,  &5 - x - E P 5  Pl”L11 L15ZPl P 5 .  

In further Jacobi identities one needs an expression for [Q, 2’1. We define arbitrary 
parameters yI 

[a, 27 = ( - l iyI  riQ. (2.10) 

From the [P, Q, 21 identity one finds 

if x f 0, 

The [Z, Q, Q] commutator provides 
then yi+’  = yi. (2.11) 

(2.12) 

By definition, the left-hand side must be antisymmetric in i-j. Using the methods 

[ z ’ , z ’ l = 2 y l ~ [ i k  i k  )z * 

k 
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described in the appendix, it is not difficult to prove the antisymmetry in i t+ j  of { I ; }  

if i, j ,  k = 1, 2 mod 4. Therefore we must have 

Y i  = Y j  w h e n 1  { ' } Z k  ZO. 
k 

(2.13) 

If there is at least one non-zero Z", we can look to i = 2, j = m. Then the sum in 
(2.13) reduces to 

2 m  
for m # d. 

Therefore 

Z " # O * y m = y * = y  for m f d. 

(2.14) 

(2.15) 

The case m = d  can only occur in d = 2 mod 8, but then if x ZO or y1 f O  we must 
still have Y d  = Y d - 1  (by (2.10) or (2.13) with i = 1). For the other cases, (2.15) shows 
that each non-zero y t  must be equal to y 2 .  The [a, Z, Z ]  Jacobi identity restricts the 
y k  still further. If {ikl} z o then 

if Y k  = 0: y i  = 0 or y j  = 0, 

if Y k  f 0: y i = y j = y k  or y i = y j = O  
(2.16) 

The solutions of these equations are different in each dimension. However, two 
solutions are general: 

(a) all k : Y k  = y ,  
(b) Y 4 k + l =  0, Y 4 k t 2  = y except y d  which is arbitrary. 

In odd dimensions (2.8) has as a consequence 

Y d - k  = Y k ,  d odd. (2.17) 

Therefore solution (b) cannot exist in odd dimensions. However, (2.16) does not 
exclude some other solution. For example, in d = 10 there are still the following 
possibilities: 

(c) y 1  = y 2  = Y9 = Y l O  = Y, y.5 = y6 = 0; 

(2.18) 

(f)  y 2  = y, y l o  arbitrary, Y1 = y 5  = Y6 = y g  = 0. 
In higher dimensions, more constraints are imposed on the Y k .  In d = 11, the condition 
(2.17) allows only solutions (a), (c) and (e). In d = 12, apart from (a) and (b), (d) is 
still possible. (f)  can also occur, but (2.15) then tells us that y l o  = y or y l o  = 0. 

The last Jacobi identity is the [a,, Qb, a,] identity. After Fierzing it reduces to 
the equations 

(2.19) 

where k and 1 are again k ,  1 = 1, 2 mod 4. The prime on the sum symbol means that 
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for odd dimensions, one only sums over k = 1 to ( d  - 1)/2. Equation (A20) shows 
that this is just a factor of two for odd dimensions. Using (A19), (2.19) becomes 

fo rd  = 2 ,4  mod 8, 
ford  = 3 mod 8. 

(2.20) 1 d-1  x -2 1 ( - ) k ’ + i (  i )  ( - i ) Y k  2 2”’y,( ji, 
k r  

The summations run over 

i = max ( k  + l  -d, O)-,min (k, I )  

k = l + d  restricted to k = 1 , 2  mod 4 .  
(2.21) 

However, one can first sum over (k - i )  and then over i. In this way one can use 
equations (A10) if we now put 

Vi: Y4z+l = y1, y 4 ~ + 2 =  y2. (2.22) 

This will allow us to prove the existence of the solutions (a) and (b) mentioned above. 
One obtains 

X = 2d’2(y2 sin $drr - y1  cos $ dlr )  

= 2n’2(y1 sin i d r  - y2 cos i dlr )  

= y1(2d-’ .f 2d/2) - y22d-‘ 

for 1 = 1 mod 4 .  

for 1 = 2 mod 4 ( # d ) ,  

for 1 = d .  

(2.23) 

Solution (a) corresponds to y1  = y 2  = y.  For d = 2, 3, 4 mod 8, (2.23) then indeed 
satisfies (2.20). In solution (b), y l  = 0, y2 = y. In d = 4 mod 8, this still satisfies (2.20). 
In d = 2 mod 8, (2.23) would give 

x = 2d‘2y for 1 = 1 mod 4 ,  

= O  for 1 = 2 mod 4 ( # d ) ,  (2.24) 

--2 y f o r I = d .  d-1  

However, for this case we could choose the value of Yd arbitrarily. For k = d ,  i can 
only be i = I in (2.20). Therefore we get 

x = 2d’2y f 2(yd - y ) 2 0 for 1 = 1 mod 4 ,  

for 1 = 2 mod 4 ( # d ) ,  (2.25) =0-2(yd-y)Ly2 d / 2  

=-2d-’y-2(yd-Y)2yd2d’2 fOr /=d .  

So, solution (b) still exists if we choose 

)Y. yd = (1 - 242-1 (2.26) 

Solutions (a) and (b) thus exist for all dimensions as indicated. Actually, all other 
solutions seem to violate the [Q, Q, Q] Jacobi identity, as we will show in the different 
dimensions. 

For solution (a) we can identify 2: with P,: 

z: = ( 2 y / x ) P , .  (2.27) 

y is then just a normalisation factor. One finds 

z;” = 2yM,,. (2.28) 
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Poincart algebras are obtained as the limit of the de Sitter algebras where x = y = m = 
0. The Z' then commute with all other generators except for the Lorentz rotations. 
Z'*), Z'", etc can be introduced, but are not necessary as in the de Sitter algebra. 

Remark that by (2.11) solution (b) is only possible for x = O .  We now look in 
more detail at several dimensions. Although equation (2.19) is a relation between 
the Y k  for every value of y ~ ,  1 = 1, 2 mod 4, it turns out that they all imply only one 
or two independent equations. These equations can be derived by tables 1-4 (calcu- 
lated with the aid of equation (A19)), which give the values of c ( k ,  m )  defined by 

( ( - ) k / k ! ) r k r m r k  = c ( k ,  m ) r m .  (2.29) 

The resulting independent equations are given for d = 2, 3, 4, 10, 11 and 12 in table 
5 .  One can always check the existence of solution (a). Solution (b) can also be found 

Table 1. c ( k ,  m )  for d = 4 .  

1 2 
k 

0 1 1 
1 2 0 
2 0 2 
3 2 0 
4 -1 1 

Table 2. c (k ,  m )  for d = 10 

m 1 2 5 6 9 10 
k 

0 1 1 1 1 1 1 
1 8 -6 0 2 -8 10 
2 -21 -13 5 3 -27 -45 
3 -48 2 0 8 48 -120 
4 42 - 14 10 2 42 210 
5 0 28 0 12 0 252 
6 42 14 10 -2 42 -210 
I 48 8 0 8 -48 -120 
8 -21 13 5 - 3  -21 45 
9 -8 -6 0 2 8 10 

10 1 -1 1 -1 1 -1 

Table3. c ( k , m ) f o r d  = l l ; ( k , m ) s ( d - 1 ) / 2 .  

m 1 2 5 
k 

0 1 1 1 
1 9 -7 1 
2 -35 -19 5 
3 -15 21 5 
4 90 -6 10 
5 42 42 10 
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Table4. c ( k , m ) f o r d = 1 2 .  

1 2 5 6 9 10 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1 
10 

-44 
-110 

165 
132 

0 
132 

-165 
-110 

44 
10 
-1 

1 1 1 
-8 2 0 

-26 4 6 
40 10 0 
15 5 15 
48 20 0 
84 0 20 

-48 20 0 
15 - 5  15 

-40 10 0 
-26 -4 6 

8 2 0 
1 -1 1 

1 1 
-6 8 

-12 -26 
2 -40 

-27 15 
36 -48 
0 84 

36 48 
21 15 

2 40 
12 -26 
-6 -8 
-1 1 

Table 5. Independent relations contained in the [Q, Q, Q] Jacobi identity for  graded 
de Sitter algebras. 

d Relations 

for the even dimensions. Note that in d = 2 ,  equation (2.26) implies y20 ( y = y 1 ) .  

Finally one can show the non-existence of other solutions (c)-(f). 
In ten dimensions (as in all d = 2 mod 8) one can introduce Majorana-Weyl spinors. 

The 32-component Q, can be decomposed in two chirality eigenstates 
Q, = +(1* r*)Q. (2.30) 

In terms of these 16 component chiral generators (2.3) and (2.5) are 

[P,, a'] = f x  T,Q-, [P,, Q-I = i x  II,Q', 

{Q:, Q l I  = (riC-')abzil + (1/5!)(r  ~ ~ . . . , 5 C - ' ) a Z ~ ~ . . . j L ~ ,  

(2.3 1) 
{Qi, Q b )  = VLC-'),Zi' + (1/5!)(r  ~ l . . . ~ ~ C - ' ) a b z L ~ . . . ~ ~ ,  
{Qi, Q b )  = (U'C-'),ZO+~(r=,C-') ,bz2,,+ ~ ( r = l . . . j L ~ C - ' ) ~ ~ , ~ . . . , ~ .  4 

The new quantities are expressed in terms of the old ones as follows: 

U* = +( 1 f r*), r; = u*rw, 
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If we consider Weyl generators (only one chirality, say Q*), then only 2;' and a 
self-dual 2'' appear. From (2.31), P, now commutes with 0'. So effectively x = 0 
and we can only have a PoincarC algebra. This could already be expected from the 
fact that no two-index tensor can appear in the commutator of chiral spinor generators. 
So MWy cannot appear in {Q+7 Q+}. Therefore Majorana-Weyl spinors only allow 
PoincarC algebras. 2;' can still be identified with P,. Z+' commutes with everything 
(except for Lorentz transformations) and is some sort of a central charge. It can be 
omitted from the algebra. However, it could play a role in obtaining off-shell field 
representations. Its reduction to four dimensions gives, among others, six scalar central 
charges. 

We conclude that de Sitter algebras with Majorana spinors exist in all dimensions 
considered. In even dimensions one also has a smaller algebra with only Z'4k,+2) 
appearing in the {Q, Q} commutator. However, this is not a de Sitter algebra, in the 
sense that P, is not present, but a graded Lorentz algebra. It is in fact the generating 
algebra for the de Sitter algebra in the lower dimension. This will be discussed in 8 5 .  

3. The d-dimensional conformal superalgebra 

In this section we will extend the N = 1 conformal superalgebra in four space-time 
dimensions to any number of dimensions in which Majorana spinors can be defined, 
i.e. d = 2, 3, 4 mod 8. This superconformal algebra is defined by the following 
requirements: 

(1) its bosonic sector includes the standard d-dimensional conformal Lie algebra; 
(2) it contains a minimal number of spinorial generators. 
The first condition leads us to introduce the bosonic generators D, P,, K ,  and 

MeV for dilatations, translations, conformal boosts and Lorentz rotations respectively. 
These generators satisfy the commutation relations 

[D, P,I = -Pw 

[P,, K,1= 2(S ,a -M,u)7  

[a K ,  1 = K,, 

[Mpw PA 1 = 6vkp, - 6,Apu, [ M p " ,  KA 1 = ~ " A K ,  - 6,AK", 
(3.1) 

[ M W Y ?  M K A  1 = S , & f v K  + 6 A f w A  - SpMvA - au&f,K, 

all other ones being zero. Equations (3.1) are valid for any number of dimensions. 
In  order to obtain a minimal grading of this algebra, it is necessary to introduce 

two spinorial generators Q,, Sa, which are eigenvectors of the dilatation operator. 
One finds for their Weyl weight -+, +: respectively. Moreover, the Jacobi identities 
with one fermionic and two bosonic operators require P and K to rotate S to Q and 
vice versa. Since Q and S are by definition Majorana spinors under the Lorentz 
rotations, we obtain the following commutation relations up to normalisations: 

[M,,, Qal  = --$(rPvQL 
[D, Q a l =  - i Q a ,  

[ ~ w w  s a l =  - ! ( r w ~ ) a >  

[D, s a  I = + s a ,  
(3.2) 

[P,, Qal = 0, [P,, Sal = --WWQla, 

[Kw, Q a l  = (r,S)a, [Kw7Sal=O* 
As remarked above, this grading exists, when Q, S are Majorana spinors, in sll d = 2, 
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3, 4 mod 8; in other numbers of dimensions one can only use Dirac spinors. The 
above algebra is, however, not complete. In particular, we do not know the anticommu- 
tators of two spinorial generators. We will now construct a closure of the algebra 
defined by equations (3.1) and (3.2), assuming that no further spinorial generators 
are introduced, as we required in condition (2). 

w 1  ..... I r k ,  antisym- 
metric in all Lorentz indices, by 

r f k )  ~ f k j  For this purpose we define bosonic operators 22:. .... ,k, Z,, ,..., ,k, 

k K !  

(3.3) 

In the following we will often simplify our notation by not writing out explicitly all 
(summations over) the Lorentz indices pl,. . . , I L L .  As indicated by the prime on the 
summation signs, the sums on the right-hand side of equations (3.3) range over 
0 s k s d whenever d is even, but only over 0 s k s (d  - 1)/2 for d odd, exactly as in 
equation (2.5). Restricting ourselves to the Majorana dimensions d = 2, 3,  4 mod 8, 
the first two anticommutators are symmetric in the spinor indices ( a b ) ,  hence only 
the Zfm), Z'(m) with m = 1, 2 mod 4 occur. 

The Lorentz transformation properties of 2, Z', A are manifest. Those under 
dilatations follow immediately from the definitions (3.3): 

[D, Z ' k ' ]  = - Z ' k ' ,  [D, Z " k ' ]  = Z , ( k ' ,  [D, A'k'] = 0. (3.4) 
In particular, the original bosonic operators can be included among the 2, 2' and A 
as follows: 

P, transforms as 2:) ; 

D,  M," transform as A''', A:,! respectively. 

K, transforms as 2;') ; 

It turns out that in actual calculations it is inconvenient to have defined Z'k ' ,  Z ' ( k )  
andA'k' in d = 3 mod 8 only for k s (d  - 1)/2. In order to be able to extend summations 
over all values of k ,  we define 

etc, as in equation (2.8). As an illustration of the usefulness of this definition, we 
determine the commutator [P,Z"k'] by solving the Jacobi identity for P and two 
spinorial generators S :  

(3.6) [P,, {sa, s b } ]  = {[P,, s a l ,  s b ) + { [ P & ,  sbl, s a } .  

Straightforward substitution leads to 

(3.7) 

There is no prime on the sum over m on the right-hand side. But this sum, as well 
as the primed sum over m on the left-hand side, is restricted to m = 1, 2, mod 4, for 
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reasons explained above. For d = 3 mod 8 we now split the sum over m on the 
right-hand side of (3.7) into a primed sum plus a remainder; we find 

To rewrite this expression we use equation (A17):  

and 

d = 3 mod 8. (3.9) d - k  - d rwl. .w 'd -4 -  - ( i /k ! ) & w l . . . w d ~ ~ d . . . w ~ - ~ - l ,  

Putting all this together using the definition (3.5),  one obtains 

(3.10) 

where the sum over k now runs over all values of k. From this we learn the expression 
for [P, 2'1. 

Similarly one can work out the other Jacobi identities with P or K and two spinorial 
generators. This leads to the further relations 

k 1  
[P, Z'"] = 0, [K, Z 'k ' ]  = -2 1 { . )AiJ i ,  

I 1  

(3.11) 1 k  i l k )  - [P, Z"k ' ]  = -2 1 ( . ]AiJ', [K ,Z  1-0, 
I 1  

k 1  1 k  
[P, AIk'] = { , ]Z'", [K, A'k' ]  = 1 [ , )z''li 

I 1  1 1  

The next step is to compute the commutation relations between Z, Z' or A and the 
fermionic generators Q, S .  Because we do not allow the introduction of new fermionic 
generators, and because of the Weyl weight of the various operators, they must take 
the form 

[Zim', Q] = 0, 

[Z"", Q] = b ir"S, [Z''mi, S ]  = 0, (3.12) 

[A ik ' ,  a] = akFkQa, 

[Zimi, SI = bmFmQ,  

[A'k' ,  SI = aLTkS. 

To determine the coefficients ak, a L and b,, bk ,  one solves the Jacobi identities with 
one spinorial generator 0, S,  one bosonic operator P or K and one of the new bosonic 
generators 2, 2' or A .  This leads to the following relations: 

Qk, 
b, = b k  = 2a,,' = 2 ~ , - ~ ,  

k t l  f 
a k = ( - )  ak, 

(3.13) 
Vm = 1 , 2  mod 4, 

and hence 

ak = ski-2, V k  = 0 , l  mod 4, except: k = d, fo rd  = 4 mod 8 .  

It now remains to calculate the commutators of 2, 2' and A among themselves. 
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These follow from the Jacobi identities with two spinorial generators and 2, 2' or 
A. Arguments analogous to those leading to (3.12) now establish that 

(3.14) 

As in (3.11) the sums on the right-hand side run over all values of the index, even in 
d = 3 mod 8, provided we use the definition (3 .5)  whenever k 3 (d + 1)/2, As a result 
of this definition one finds ad-k =ak. Besides (3.14) we find more relations to be 
satisfied by the coefficients ak, b,, if we analyse Jacobi identities with one fermionic 
generator: 

\ j l + { i l  1 (3.15) 

{ m i  " ] # O + [  if ai # 0, then: b, = b, = 0 or 6 ,  = b, = 2ai, 

m , n = 1 , 2 m o d 4 .  
Again, in d = 3 mod 8 the only independent conditions are those for k, 1 s ( d  - 1)/2.  

Equation (3.13) implied already that the independent ak are those with k = 1, 2 mod 
4,  and ad if d = 4 mod 8. If k, 1 and i take those values appearing in the first equation 
of (3.15), then this is exactly the same as in the de Sitter case equation (2.16). Therefore 
the solutions are immediately restricted to those mentioned there. The extra conditions 
from (3 .15)  eliminate some possibilities. The general solutions (a) and (b) also exist 
in this case. 

(a) All A(k) ,  Z'"'), 2'(m) exist and b,  = 2ak = 2a for all k and all m = 1, 2 mod 4; 
a is a free parameter. 

(b) All AIk1, Z(,), Z'(m' with k odd and m even vanish, and accordingly a2p+1 = 
b2,  = 0. The non-zero coefficients satisfy b2,+l = 2a2, = 2 a ,  except ad in d = 4 mod 8, 
which remains a free parameter. This solution however does not exist for d = 3 mod 8 
because of the relation ak = a d - k '  connecting odd and even ak. Other solutions are: 

(c) b l  = 2a2 = 2no, but all other coefficients vanish. 
In odd dimensions, this exists also with bd-l  = 2ad = 2ad-2 = b l .  Finally, this last 

case, for odd dimensions (e.g. in d = 1 1 :  b l =  b l o # O )  also exists in one dimension 
less (e.g. in d = 10). 

k I k' i z o +  if ai = 0, then: ak = 0 or U [  = 0; 
if U j  # 0,  then: ak = U [  = 0 Or U k  = = ai ;  

if ai = 0, then: 6 ,  = 0 or 6 ,  = 0; 

(d) In d = 2 mod 8: 61 = 2a2 = 2a0 = bd = 2ad-2, other coefficients are zero. 
Finally, there is one more Jacobi identity to be solved, namely one with three 

spinorial generators of mixed kind. These identities are all equivalent, while the ones 
with three identical fermionic generators are trivially satisfied due to the Weyl weight 
of the various operators. For any solution (ak, b,) the mixed Jacobi identity reduces 
to a type of Fierz relation to be checked: 

(3.16) 

where U = [ d / 2 ] .  We show that this identity holds for solutions (a) and (b) mentioned 
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above. First we note that the prime on the sum in (3.16) can be removed i f  we multiply 
the right-hand side by a factor of 2 in odd dimensions. This follows from the relation 
(A18).  Using (A17),  we can reduce (3.16) to a check of the equation 

Here the sums run over 

k:O-+d,  

i :  max(0, k + m  -d )+min(k ,  m ) .  

Define 1 = k - i  and interchange the order of summation. Then the ranges of the sums 
become: 

1 :  O-, d - m, i :O+m.  

Clearly, the minus signs in (3.17) are the same for k and (k + 4 ) ,  and consequently 
for 1 and (1+4) .  Therefore we can split the sum and use (A10). The result depends 
on i, but again modulo 4 .  So we can use (A10) once more for the sum over i. Putting 

aZk+l =a19 aZk = a09 V k ,  

we can simplify the expression for X to 

To prove the first solution, one puts a. = a l  = ibm and uses m = 1,  2 mod 4,  d = 2,  3, 
4 mod 8. Equation (3.17) then follows straightforwardly. The second solution is 
obtained by taking a l  = 62,, = 0, a. = :b1+4,, = a and this yields (3.17) immediately for 
d = 2 mod 8. For d = 4 mod 8 there is the additional complication that a d  is a free 
parameter. In (3.17) k = d restricts i to i = m ; therefore one finds 

X = - a d  +a ,  

X = a2d’2+ (ad - a ) ,  

m = 1 mod4, 

m = 2 mod 4, 

and (3.17) is satisfied if 

(3.18) a d = ( 1 - 2  d / 2  )a. 

For example, in d = 4 this gives u4 = -3a. In N extended supersymmetry in d = 4 we 
get here a4 = (N -4)a,  which agrees with this result. 

We have proved the existence of at least one solution for d = 3 mod 8, and two 
solutions for d = 2, 4 mod 8. In the second one, only half the number of bosonic 
generators Z, Z’, A is present. For d = 2 mod 8 this second solution corresponds to 
taking Majorana-Weyl spinors for Q, S.  In d = 4 it is the usual N = 1 superconformal 
algebra. 

To rule out solutions (c) and (d) we analyse equation (3.16) in detail for all possible 
numbers of dimensions. Using (3.13) and tables 1-4 we establish the conditions 
resulting from (3.16) in d = 4 ,  10, 11, 12 respectively. They are collected in table 6.  
It is evident that all solutions considered above satisfy these equations. Other solutions 
to equation (3.15) are ruled out. 
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Table 6. Independent relations contained in the [a, Q, SI Jacobi identity for the supercon- 
formal algebras. 

d Relations 

4. Extra spinor generators 

In § 2 we derived the most general de Sitter or Poincart algebra under the assumption 
that there exists only one spinor generator. Our motivation was that going to higher 
dimensions replaces the need to look for higher-N algebras. However, recently it 
was shown that in 11 dimensions spinorial central charges can play a role (d'Auria 
and Fre 1981). These are extra generators which enter in [Z,  Q] (or [P, Q]) commu- 
tators, but commute themselves with all other generators. They are not equivalent 
to the first introduced Q generator and therefore the theory is not a higher-N theory. 
We will now investigate the possibilities for extra fermionic generators. 

The first place where we used the fact that only one spinor generator is present 
was in equation (2.3) where we wrote that [P, Q] is proportional to Q. If we relax 
this condition, we should write 

[P,, Ql = r,Q', [P,, Q'l = r,Q" (4.1) 

Then the [P, P, Q] Jacobi identity would imply 

Q" = ax *Q, 

If x # 0, then we can define generators Q1 and Qz such that equation (4.1) is 
diagonalised, 

QI = Q'+:xQ, Q2 = Q' - ~ x Q .  (4.2) 

Then equation (3.1) is replaced by 

[P,, ail= i x  r+Qi, [P,, Q2] = -+x T,Q2. (4.3) 

So, for the de Sitter case (x # 0), equation (2.3) is still the most general case if we 
allow no higher representation spinors. We can continue as in 0 2 with Q1 only. Tke 
generator Q2 provides a duplication of the algebra with the other choice of x = f Jm. 
This has therefore to be considered in a treatment of higher-N de Sitter algebras or 
better, ( N , M )  de Sitter algebras where N generators have x = Jm,  and M have 
x = -Jm.  

- 

For the PoincarC case (x = 0), (4.1) reduces to 

[P,, Ql = r,Q', [P,, Q' l=  0. (4.4) 
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Now Q' satisfies the same commutation law with P, as Q does in the Poincart case 
of § 2. So, for a general treatment we could continue with Q' and a rule such as 

However, we will only treat here the case when Q' are some sort of fermionic central 
charges (apart from their commutation rule with MFY which shows that they are 
spinors). This is the situation found in the geometric theory of d = 11 on-shell 
supergravity (d'Auria and FrC 1981). We discuss the following case (with P, =Z: ) :  

(All other commutators are zero.) 
In the conformal algebra, this insertion is not allowed without also introducing 

other bosonic operators in {Q', Q}. For example, the [S, Z', 2'1 Jacobi identity cannot 
be satisfied with the insertion (4.6). For the Poincart case we have only the {Q, Q, Q} 
Jacobi identity which is non-trivial. This identity is exactly the same equation for z ,  
as we found in § 2 for the y I  (equations (2.19) and (2.20) or table 5 ) .  The difference 
from § 2 is that while the y, were still restricted by equation (2.16), the z ,  have only 
to satisfy the relations from the [Q, Q, Q] Jacobi identity, which are tabulated in table 
5 .  We recall that there are certainly the solutions 

(a) z k  = z for all k ; 
(b) Z 4 k + l =  0 Z 4 k t 2  = z (in even dimensions), but z d  = (1 -2  fd/Z'--l ) z .  However, 

more general solutions are of course possible. In d'Auria and FrC (1981) two other 
solutions occur. The equation of table 5 for d = 11 corresponds to their equation 
(6.4). (Note that they do not define the factor l / k !  in the {Q, Q} anticommutator.) 

5. Conclusions 

Using only Jacobi identities we showed the existence of de Sitter and PoincarC 
superalgebras in dimensions which allow Majorana spinors. The de Sitter algebra is 

We repeat that here i, j ,  k = 1, 2 mod 4. In odd dimensions the prime on the first 
summation indicates that k ~ ( d - l ) / 2 .  This prime is not on the last summation 
symbol. In odd dimensions we define 

( 5 . 2 )  
! d - k )  ( k )  z,,...,,_, = (i/k!)&uk . . . Y 1 , l . . . , d ~ k z Y 1 . . , " k ,  

The yi must still satisfy equations which have only the following solutions. 
(a) For all k 

Y k  = y. (5 .3 )  
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We can define 

2;) = 2(y /x )P , ,  zlf; = 2Yh4," (5.4) 

(y is then just a normalisation factor). 
The PoincarC theory can be obtained in the limit x = y = O .  For the PoincarC 

theory Z 2 ,  Z5,  etc can be introduced but are not necessary, while they are unavoidable 
in the de Sitter algebra. In 10 dimensions (d = 2 mod 8 )  introduction of Majorana- 
Weyl spinors is possible only for the PoincarC case. Apart from the Lorentz transforma- 
tions the only non-zero commutator is 

( 5 . 5 )  5 {Q,, Q b }  = (r,c-')dfi + (1 /5 ! ) ( r , , . . . ~~C~ ' ) ,~~ , . . . , ~ ,  

Q is chiral and 2' is self-dual. 
(b) In even dimensions 

Y k  = 0 ,  fork odd; 

Y k  = y,  for k even, (5.6) 

except: y d  = (1 - p - 1  ) Y >  d = 2 mod 8 .  

In this case P, is not present in the algebra, hence we have in fact a graded Lorentz 
algebra. 

The conformal algebra in d dimensions is 

all other commutators are zero. 
In equation (5 .7)  k runs over O +  d (or (d - 1 ) / 2  for X' in odd dimensions), while 

m and n must be 1 ,  2 mod 4. In odd dimensions equation ( 5 . 2 )  is defined for A ,  Z 
and 2'. Again there are two possible solutions 

(a) for all k :  ak = a ;  

(b) (only for d even): ak = 0, k odd; 

ak = a ,  k even, 
( 5 . 8 )  

d = 4 m o d 8 .  except a d = ( 1 - 2  d l 2  ) a ;  
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In solution (b) only Z‘“ ’ ,  Z”m’ with odd m and AIk’ with even k exist. In all cases 
one can make the identification 

z:’ = - 2 a ~ , ,  2;” =2aK,, 

A’” = -2aD, A:” = 2aM,,, 1) 
( 5 . 9 )  

and a is again a normalisation factor. In d = 4 solution (b) is the standard conformal 
algebra, which has P, K and M as the only non-scalar bosonic generators. A‘4’ is 
then the U ( l )  generator. In 10 dimensions solution (b) allows Majorana-Weyl gen- 
erators Q and s; if Q is chiral, S is antichiral and vice versa. 

We have indicated the numbers of generators of the various d = 10, 11 and 12 
algebras in table 7 .  Note that we always choose to include the smallest conformal 
algebra, e.g. the one with Majorana-Weyl spinors and duality conditions in d = 10. 
One then finds some interesting relations between the algebras. The superconformal 
algebra has the same number of generators as the super de Sitter algebra in one more 
dimension. Moreover, the generators of the de Sitter algebra in d dimensions can be 
decomposed with respect to the Lorentz subgroup of the (d - 1)-dimensional confor- 
mal group. This is always true for the ordinary Lie algebras. Denoting the d- 
dimensional indices by C;, . . . and the (d - 1)-dimensional by ,U, , . . one can write 

where again x 2  = m. Similarly, the ordinary de Sitter Lie algebras can be obtained 
from the higher-dimensional Lorentz algebra by writing 

(5.11) 

satisfying 

[M;;, M @ ]  = 4M[; [”$\. (5.12) 

If one wants to extend this procedure to the graded Lie algebras, one finds from table 
7 that the d = 12 Lorentz algebra must be split in two. Duality should relate Z“o’ to 
Z‘*’ and reduce 216’ to a self-dual tensor. The resulting d = 11 de Sitter superalgebra 
generates, as mentioned, the d = 10 conformal superalgebra. Besides this (unique) 
d = 11 de Sitter superalgebra there is also the graded Lorentz algebra in that dimension, 
provided one interprets the vectorial generator as the dual of a 2“” operator. This 
means that it generates the d = 10 de Sitter superalgebra as well, which has exactly 
the same number of components as the conformal superalgebra in 10 dimensions. 
Thus there is a one-to-one correspondence between the generators of the de Sitter 
and conformal algebras in d = 10. Through this correspondence the chiral part of Q 
(de Sitter) becomes Q (conformal), while the antichiral part becomes S (conformal). 
Similar correspondences exist between the superalgebras in other dimensions, e.g. in 
d = 2, 3, 4. As a result, the classification of these supersymmetry algebras in terms 
of the standard Osp and SU graded Lie algebras is the same, as indicated in table 7.  

Finally we remark that we have investigated here only the usual kind of superalge- 
bras which are finite and have structure constants as opposed to infinite-dimensional 
ones with structure functions. That is, we have considered rigid supersymmetries, not 
local ones. Local algebras might still allow extra possibilities such as transformations 
involving derivatives (e.g. gauge transformations). This is known to happen, for 
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Table 7. Number of bosonic (B) and fermionic (F) generators of the N = 1 supersymmetry 
algebras in d = 10, 11, 12 and their classification in terms of standard graded Lie algebras. 

d Lorentz algebra de Sitter algebra Conformal algebra 
B F B F B F 

: 45 Q :  32 P : I O  Q:32 P , K  , 20 Q: 16 
:210 M : 45 2 1 5 ' .  Z"":252 S ' 16 

z' : l  

Z " O 1 :  1 = , S '  

z191 

Z . ' O '  : 1 

10 
2'61  

:252 D : 1  

:210 M : 45 2t61 

: 10 A ( 4 )  :210 

256 32 528 32 528 32 

SU! 161 1) 0SP(32,1 J OSPi3211) 

P , 11 Q:32 P,K : 22 Q:  32 
M . 55 :110 S :32 z ' 2 1 z . # 2 '  

:462 Z'",  Z"":924 
D : 1  

: 11 

M : 55 
:165 
:330 

:462 

z151 

A , l l  

A141 

* , S I  

528 32 2080 64 

OSP(32Il) Onpi64 1 j 

12 M : 66 Q: 64 P : 12 
ZC6'  :924 M ~ 66 

,792 Z"" : 66 

:924 
,220 

66 

z ' s '  

z 'b l  

z '9 '  

z""' 

1056 64 2080 

OSP!32/1) + Ospi32/11 Osp!64/ 1) 

Q :  64 P,K : 24 

ZIS'Z"S' : 1584 S:64  

Q:64 

z"""9' 

D ,  A " ~ '  : 2 

A'4' A'% ,990 

440 

M, A"" : I32  

. .  
:924 Alhl 

64 4096 128 
SU(641lj 

example, in N = 2 supergravity in d = 4, where central charges are not allowed in the 
rigid superconformal algebra, but do occur in the local algebra (de Wit er a1 1980b). 

Appendix 

This appendix describes our conventions for the Dirac algebra in arbitrary dimensional 
spaces and a number of useful formulae and calculational procedures. We use the 
symbol I'(" to denote a completely antisymmetric product of i gamma matrices 

('41) ( r L l . . . ~ , ) a b  = ( ~ [ F I ~ F Z  * . . r ~ , l ) a b .  
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The antisymmetrisation, denoted by the square brackets, is such that the overall weight 
is 1. In ( A l )  we write for the various indices: 

for spinor indices, a, 6 , .  . . 
cc, . . for Lorentz indices, 

i, j ,  . . . for the number of Lorentz indices. 

As usual, spinor indices are often omitted. We also frequently omit Lorentz indices. 
Then i in X'" indicates the index structure [pl . . . wI]. Summation over repeated 
Lorentz indices is always understood, even if they are implicit. However, a repeated 
I ,  1, . . . does not imply summation over i, j ,  . . . if this is not explicitly mentioned. For 
example, in X"'Y"' summation over [kl . , . p l ]  is to be understood, but only for the 
value of i indicated; there is thus no summation over all possible values of i. In odd 
dimensions summations are sometimes restricted to 0 s k s (d - 1)/2.  This is indicated 
by a prime on the summation symbol. If the order of Lorentz indices on X"'  is 
reversed we denote this by the symbol z"'. It follows immediately that 

. .  

for i = 0 , l  mod 4, 

z " ) = - X " ) ,  f o r i = 2 , 3 m o d 4 .  
(A21 

J?'" = x"', 

Spinors in d dimensions have 2" components, where 

v = Int[d/2]. 

Scherk (1979) analysed in which dimensions Majorana spinors exist, with a charge 
conjugation matrix satisfying 

c = -CT r:: = -cr,c-'. (A41 
In van Nieuwenhuizen (1981) it was shown that in d = 8 , 9  Majorana spinors can be 
defined for massless fields, with, in the last equation (A4), a plus instead of a minus 
sign. Then our analysis does not apply. Equation (A4) implies 

(A51 (TIC -1)T = ( - 11 +1i+c - 1 ~ plc -1. 

The notation is convenient in calculations and can be defined by 

Clearly, from (A5), in Majorana dimensions T"'C-' is symmetric in its spinor indices 
whenever i = 1, 2 mod 4. Instead of repeating the complete proof given in Scherk 
(1979), we will present here a counting argument. In d dimensions there are (t) 
independent matrices I'"'. Because 

i=O f ( 3 = 2 d ,  

we learn that in euen dimensions the complete set of r'" spans the 2" x 2" dimensional 
algebra of matrices in spinor space. In odd dimensions it suffices to take i = 
0, .  . . , (d - 1)/2 because (A7) is a factor 2 too high and because 
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Alternatively, one may restrict oneself to the odd or even r“), which are connected 
through a duality transformation. Their number is also 2d-1, as follows from (A8). 

Of the 2” x 2“ independent matrices I?’) there are N ,  symmetric and N ,  antisym- 
metric ones with 

N ,  = 2”-’(2” + l), N ,  = 2”-’(2” - 1). (A91 

Now, for d 3 1, the following summation formulae are to be noted (Gradshteyn and 
Ryzhik 1965): 

b (3+(3+ . . .  =(2d-2+2d’2-1sine), 4 

c (3 + (i) + . . , = (2d-2- 2d’2-1 cos *), 
4 

d (:)+(a+ , . .  =(2d-2 -2d /2 -1s ine ) .  4 

We see that for even dimensions, b and c sum up to N ,  if and only if d = 2, 4 mod 8. 
For odd dimensions c gives N ,  provided d = 3, 5 mod 8. But only for d = 3 mod 8 

, hence only for d = 2, 3, 4 mod 8 can (A5) does (A8) connect r(’ mod 4, 

be satisfied. 
Similarly one can show that Majorana-Weyl spinors exist only in d = 2 mod 8. In 

these dimensions one can introduce 

with r(2 mod 4) 

r* = ( i /d ! )E  *i-.”dr~l...wd, 
satisfying 

Then the projection operators 1/2(1 f r’) commute with the Majorana condition 

The completeness relation for the independent r matrices gives rise to the Fierz 
* = CJT. 

identity 
1 1  

2 k k .  
= c’ 7 rib Tr(Mrk) ,  

where the trace is over the spinor indices. 

into irreducible components. In particular one finds 
With the aid of this formula one can learn how to decompose products of r% 

where the Clebsch-Gordan coefficients, denoted by the braces, are defined as follows: 
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with 

.s = $(i + j  - k ) ,  t = :(i - j  + k ) ,  U =+( - i+ j+kj .  

The triangular figure denotes a product of Kronecker 6 symbols, antisymmetrised 
with weight one as in the corresponding T's. The precise rule is as follows: write the 
indices fil,, , , f i t  on the i line in the direction of the arrow; similarly for ( j )  and ( k ) .  
The connection lines then indicate Kronecker 6's with the indices it connects as 
arguments. If no lines cross, the overall sign is positive; for each crossing of connection 
lines, a minus sign is to be included. Explicitly 

A l A 2  . . . ' k  

Apart from a few numerical factors, which we redefined, this notation was introduced 
in Kennedy (1981). The main advantage is that no indices have to be written out 
explicitly and tedious index manipulations can be avoided. One may turn and reflect 
diagrams at will, without introducing minus signs. Reversing the arrows in the figure 
means reversing the order of all antisymmetrised sets of indices. This results in a sign 
change following the rule (A2). As an example of diagram manipulations, we prove 
equation (3.8): 

Using (A15) we can immediately check the numerical factors. Therefore we have to 
prove 

m k 

The arrow over i on the left-hand side of (A17) is taken into account by the reversal 
of the i arrow in the left-hand side of (Al8). Equation (A18) is clearly valid because 
the figures are related by a reflection with respect to the bisectrix of the angle formed 
by the ( k )  and (m)  lines. 

Finally we present another useful formula for the reduction of products of r 
matrices 

We remind the reader that the repeated k index on the left-hand side of (A19) implies 
a sum over the Lorentz indices, but not over k itself. From (A19) it follows by 
resummation (if  = 1 - i) that 
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